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Abstract

N

' The most common solution technique is subspace iteration, a combina-
tion of inverse iteration and the Rayleignh-Ritz procedure. Some diffi-
culties of this method are mentioned as well as ways to avoid them by
means of spectral transformations. This permits use of the Lanczos algo-
rithm and yields significant reductions in cost.
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1. INTRODUCTICN

In order to avoid excessive generality we assume that X and M are
real, symmetric n X n matrices. The goal is to compute all the eigen-

values lying in a given interval [Tl, T2] together with the correspond-

ing eigenvectors,
For n > 2 the eigenvalues will be real provided that kK + uM is
positive definite for some choice of Kk and u . For simplicity assume

that either K or M 1is positive definite,

Example, If K =M= (é g] then every number (real or complex) is an

eigenvalue belonging to (g] .

The pair (X, M) is often called a pencil. Its eigenvelues and

eigenvectors are denoted by

Zys Zps eees T e

Techniques for solving the problem when n < 100 are described in [Parlett,
1980] and will not be mentioned here.

The most important factor in selecting a particular algorithm is the
relative cost of solving (K - oM)u = v for u to forming the product
u= (K~ oMv . Observe that this is simply the divide: multiply ratio

for the given matrix pencil. Linear equations can be solved iteratively
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(using conjugate gradients or Lanczos) vwhen triangular factorizaticn is

not possible. The remaining sections show how this divide: multiply ratio

affects the solution technique.
With apologies to structural engineers we use capital letters for

matrices, small roman letters for column vectors, and small greek letters

for numbers.

2. SUBSPACE ITERATION

See [Bathé and Wilson, 1976] or [Parlett, 1980] for more details.

It is assumed that M 1is positive definite.

Before the start, a shift o 1is chosen in [Tl, 12] and the triangular

factorization K - oM = LDL¥ is computed., Note that for each

i=1, ..., n,

B T !
(K-o) Mz, = z.v, , v, = 7oy - (2-1)

L3
So the power method with the operator (K - GM)—lM weould converge to the

eigenvector 2y belonging to the xi closest to o0 . The usual normalization is
* =
zi sz I

explicitly.

13 (Kronecker). Of course, K - oM is not to be inverted

The number of eigenvalues in [Tl, T2] is unknown but subspace iter-

ation must begin with the difficult chcice2 of the dimension p and the

somewhat easier choice of starting vectors (xl, X

oy sees xp) = X with
xO*MXO = Ip . The usual implementation is: for k =1, 2,

—— 1
- -y - 2 i
convergence repeat * > < L 3:
Pad ; p L
== AR SE
- ! T | \‘1' "y
F— " » 5 o2 ’ O S .
- S 4 - EUNES e :
[ E - 1) - 1
T el e o o q° .
L N - - > '
o W r* g “$
e - [T
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1. Solve (K - oM)Y, = MG, for Y .
2, Compute the reduced matrices (or projecti
= Y. ¥\
Mo = T -
3 - =
3. Solve the small problem (Kk eiMk)gi
normalized eigenvectors gl, ooy gp . S
L. set X =70 .
5. Test for convergence,
To test for convergence one should use

Page L

ons )
0 for eigenvalues Gi and

G =
et dk (gl, evey gp)

of

Theorem.

(K, M) such that

Ix -8l <Mk - em)xl _/Maxl _
M M

For any x #¥0 and any scalar © there exists an eigenvalue

1 -

i, =
Here lu .

cost of the numerator discourages the use of this theoren.

wait until the values of 6

vu*Hu . Thus [HMxl s Vx*¥Mx which
M

"settle down" to the

such a criterion is not completely reliable.

eigenvalues outside both ends of |
consider an extreme case:

vectors (the columns of X )

A serious difficulty with subspace iteration

T,.] To i

1o T

suppose that at some st

K is x and satisfie

It turns out that the corresponding Ritz value is

is easy to compute but the

Often users
desired accuracy but
occurs when (X, M) has
llustrate what happens
ep k one of the Ritz
(z

s x = + 230)/%5 and

1
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zq le )\14—230 Mz30 >‘3O N >‘1+)‘3O _ Tl+12

*® + * = ~ . :
zq le Z5 M22 2 2 P

[ I
”

Although 6 1is in the middle of [Tl, T it does not signal that there

2]
is an eigenvalue A nearby. R.L. Taylor calls these "ghost" values and in
[Scott, 1981] it is shown how their presence can prevent the discovery of
good approximate eigenvectors. One remedy is to compute all eigenvalues and

eigenvectors less than T and then keep Xk orthogonal to these eigen-

1

vectors. That is expensive,

3. TRANSFORMING THE SPECTRUM

Steps 2, 3, and 4 of subspace iteration carry out the Raleigh-Ritz
procedure which delivers the best approximations to eigenvalues of (¥, M)
from the space spanned by Yk . To remove the troubles of Section 2 apply

the Rayleigh-Ritz procedure to ({X - GM)‘lM, I) because the wanted eigen-
)-l

values v, , see (2-1), are the extreme ones. However (K - oM) "M is

not symmetric. There are two ways out of this difficulty. |

I. The Svectral Transformation (see [Ericsson and Ruhe, 198C] for details).

)-1

Factor M = LL* and use L*(K - oM) "L instead of (XK - OM)_IM .

In other words change (K - AM)z = 0 into
- (L¥z) = L¥(K - cM)‘lL(L*z) (2-1)
A0 :

The powerful Lanczos algorithm can be used with the new operator. Another

advantage is that the error bound of Section 2 tecames
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6~ v| < ho* (k-om) " Lix-x6l
X

(3-2)

and the residual vectors for Xk—l are available after part 1 of step k .
The price paid for these advantages is that M must be factored al-
though it need not be invertible. It is also vpreferable to factor K -~ OM

if this is feasible.

IT. The inertial inner product.

Recall that we want to use the operator, or matrix, (K - am) v
because its eigenvalue distribution is advantageous for both subspace
jteration and for the Lanczos algorithm. However (K - GM)—lM is not
symmetric and it is often said that Lanczos requires a symmetric matrix.

That is not quite correct.

let us assume for the moment that M is positive definite. We will
consider singular M at the end of this section. The key observation is
that (X - CM)-lM is self-adjoint with respect to the "inertial" inner

product
{u, V)M = v¥™Mu .

Here is the proof,

)-1

((K - UM)—lMu, V)M = v*Me (K - oM) "Mu ,
= v™M(K - o) Lemyu
= (u, (X -~ oM)"1wv) O

M
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As usual ﬂuﬂM = Y{u,u)

M Here is the algorithm.

Lanczos Algorithm [ C must be self-adjoint with respect to (°, * )
. - g =
Pick r, #0 and compute B8, "rl“M . Set gy =0.

For j=1, 2, «.. until convergence repeat

o9y = rJ/BJ

20 9y T 0y - 9yf
3. oy = (qj, uj)M

L, Tipp T Yy T 940y
5. By = “f3+1“M

6. Test for convergence.
In our case C = (K - oM)™1m , 4
This formulation is not widely appreciated. It was given explicitly in
[van Kats and van der Vorst, 1977]. An alternative, but more expensive
version of the algorithm is given in {Parlett, 1980, p. 324]. i
The numbers di R Si computed in the course of the algorithm are put

into a tridiagonal matrix

E -1
1 B2
8 a B }
2 2 3
T, = B o .
J 3 3
. a
J
whose order J grows by one at each step.




-1
I

The eigenvalues Gi , 1=1, see, J of T, are the RFitz aprroximations
<

. - -1
to the eigenvalues of = (K - M) ™M

. As J 1increases the outer

: : ~ {w Ly -l\
values Gi quickly converge to the outer eigenvalues of (K - gM) M
and these may be converted, by (2 - 1) , into the required eigenvalues

of (K, M) close to O .

Let us consider now the case when M 1is singular but ¥ 1is vpositive
definite. It follows that (X, M) has one or more infinite eigenvalues
while C = (K - OM)-lM has one or more zeroc eigenvalues. Formally the

bilinear expression (-, -)M is not a true inner product, however when

restricted to the space corresponding to the firite eigenvalues of (X, M)
it is an inner oproduct. The algorithm given above automatically keeps the

qi s, 1> 1, 1in this subspace. It is necessary to take ry = Mro to

ensure that ql is also in the subspace. This is the cnly modification

needed when M 1is positive semidefinite.

The ghost values which can afflict the Ritz approximations for the

vencil (X, M) cannot affect either (L(K - CM)-lLT, I} or (c, I).

Consider again the example in Section 1. The Rayleigh guotient of x with

respect to both pencils is 0 = = (r%jg + X—l:g) . For any J € (1,, 1,)

, 1)
2 Ay 30 e

we find 0 € ( {0 .- {0) while the algorithm only looks at those Ritz

values outside this interval. The fact that Ritz approximatioms for

inverted operators prevent the occurrence of ghost vectors was pointed

out in [Scott, 1981].
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L., THEE LANIZCS ALOCRITHM

Figures 1 and 2 show a comrarison of the simple Lanczos algorithm ané subt-

space iteration on a structural vroblem. Comparison was stopped when

subspace iteration exhausted our resources.

R S Y .

To be fair the simple Lanczos algorithm should be campared with the simple :;_.er
method and the block Lanczes algorithm should be compared with surstace interaticn
using the same block size, e ncw give 2 theoretical comrarison to complement the
the rractical one.

/

Let A have eighenvalues ki =i for i=0, ..., n+1. Thus A is (n + 2)
by (n + 2) . Table 1 gives the number steps m required to reduce the error in

the approximation to Z.+1 below 1% of its original value. The eigenvalue error

ln+l - 3_ will then have been reduced to .01% of its original value. We assure

i

that the initial vector makes an angle of L45° with the dcminant eigenvector. The

values for Lanczos are overestimates., The eigzenvalue distribution is a difficult
one but it illustrates the power of the Lanczos algorithm.

Table 1, Number of steps m to reduce error.

n Power Method Lanczos
lO2 LA 22
3
10 LECT 110 :
)4 i
10 LEOSL 380 ‘
n a ¢n 100 %y’ﬁ ¢n 200 i

The superiority of even the simple Lanczos algorithm over subspace interaticn

can te explained as follows. OCuppose that subspace iteraticn ucses
a subspace of dimension p and runs for |} steps. It produces
Rayleigh Ritz approximation from a subspace of dimension 1 at

every step. On the other hand, with the same computationeal effort
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and usirz the same Inverted operator
Lanczos wroduces, in exact arithmetic, the Rgylelsh Ritz zrrreximations
Troem a subsvece of dirmensinon  fr . lanczos never forgets any vector tnat

has been computed in the iteration, although the vectcr itceld may nave

the essential information is cleverly coniensed in the

Cas

teen discarde

arczos algcri+nm

&

There 13 no space here to sive a detailed account of the
and the reader is referred to [Farlett, 1980 for more information.

Retween 1950 and 1972 the algcerithm nhad a poor reputaticn, nct because
it was vrocr dbut because it was poorly understocd. As =z result cf the
analysis of TPalge the situation was remedied and it did not take lcng for

some good implementations to appear, <Cne important voint is that fairly
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cheap error tounds can be ccerruted during the iteratic

correct infcrmation to te extracted Trom the ccomputed guantities and it

O
(o3
(47}
m
ct
Q
e
w3
D
[oN
o
m
[47]
O
o]
]
o
[
brj
(o]
[#2]
0
v
(93
bt
1}

vermits the alsoritim t
Soundof? errer has a Fisnificant imract cn the Lanczes algorithm,
effect I3 not to prevent convergcence tut only to delay it a little and
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There are man; prcblems in which ¥ and M are both tositive definite, M

[UN
&)

tandwidth (such as vn ) .

[#7]

diagonal or nearly so, while ¥ has a sigmificant

Most text books and references susgest the following reduction te standard form

l/f\ l,‘«
or - [ - Vg A — -
(K, M) = (M 77K - 2™ . Ty

< ardi
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Usually the eigenvalues near O are wanted and ¢ may well te C or very
small relative to the largest eigenvalue, The eigenvalue distritution

tyrically is

-,.__
L
e

icult for lanczos and disastrous for the power method with

[
wu
+
w
Lo
i
] 'J
th

the same operator. The only attraction of this approach for the large problems is
that no matrix factorization of X - oM is needed.
The temptation to avoid such factoring should be resisted. Even if

the cost is high the reduction of X - oM to LDL¥ is amply rewarded as sug-

<1 1
gested in Section 3. For the orerator Ml/e(K - aM) 1 M‘/g the spectrunm is

inverted to:

e S

0 (A=c)™t

This distribution is favorable for both subsrace iteration and Lanczcs but

Lanczos takes stronger advantage it.

STORAGE CONSIDERATICNS. Lanczos requires in the fast store, (i) two or three

n-vectors for the iteration, (ii) two vectors of modest length (say Svn )

e e e o e = =

to hold the tridiagonal T (iii) a small array to hold Ritz values.

j 2
It is also desireable, but not absolutely necessary to hold in fast storage

whatever is necessary to form Mg and to solve (X - oM)r = Mq . COften

this will be M and the triangular factors L and D of K - c¢cM ., The




attractive feature of Lanczos is that each Lanczos vector can be put Into
secondary storasge (a disk perhaps) one step after it is created. These
vectors are not needed again to compute eigenvalues tut they are reguired
at the end, after convergence, to form the eigenvectors. They can also
be used from time to time to improve the orthogonality among subsequent
Lanczos vectors and thus to hasten convergence. This device is called

selective orthogonalization and is descrived in [Parlett, 1980].

SHIFTS OF ORIGIN. Sometimes it is feasible to factor K - OM more than
once, perhaps for five different values of O . This facility helps both
subspace iteration and Lanczos because the big interval [Tl, T2] can be
split into five smaller ones and either algorithm can be used to find just
the eigenvalues in the subinterval. The choice for the five origin shifts
can be determined during the computation. Since Lanczos has available more

information on the spectrum than does subspace iteration it can make some-

what better choices for the O,

5. SOLVING (K - OM)r = Mu .

Structural engineers are very fond of what they call (variable) bandé-
solvers, For two dimensional problems X has a modest bandwidth and L
inherits this structure. Each partial column of L 1is thought of as a
conventional vector from the top nonzero element in the column down to the

diagonal. In other words, zero elements within the band take up storage

space. The gain is a beautifully simple data structure for L but for




-

three dimensional problems and for complicated two dimensional structures
the waste of storage space is too expensive. More complicated but more
e?fcient data structures are called for.

Considerable progress has been made in this area of sparse matrix
technology and users should be aware of the enormous gains to te had frem
using an ordering algorithm which effectively permutes rows and colurns of
K and M to nearly minimize the number of nonzeroc elements in L .
Important algorithms for this task are (i) the minimum degree algorithm,
(ii) nested dissection, (iii) the Gibbs-Pcole~Stockmeyer profile reducer.
Usually these are all better than the standard reverse Cuthill-McKee
algorithm, It is probably best to use some of the good sparse solver
codes now available rather than attempt to program the algorithms one-~
self. The three best known codes are the Harwell library MAlT7 routines,
SPARSPAK by Alan George and J. Liu at Univ. of Waterloo, and the Yale
Sparse Matrix Package. The most recent reviews are {Duff, 1979] and [Duff
and Stewart, 19791].

It is important to remember that the linear systems to be solved

should be indefinite but will have most of their eigenvalues positive.

6. DAVIDSON'S METHCD

L
¥or very large (n > 10 ) problems which occur in atomic and
molecular orbit calculations the matrices are not very sparse but they
are quite special in the sense that the eigenvector matrix is fairly close

to the identity. Davidson's method [Davidson, 1975], which we have no

space Lo describe here, is based on perturbation theory and seems to be

e Ml ity i, vk v BN

ud
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very effective. Eowever, both thecretical and practical considerations

[Kalamboukis, 1980] suggest that i% cannot be regarded as a general rpurpose

eigenvalue method.

[1]

[2]

(51
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